43 research outputs found

    Multiplexage par division modale pour les applications à courte distance

    Get PDF
    Le multiplexage par division de mode (MDM) a reçu une attention considérable de la part des chercheurs au cours des dernières années. La principale motivation derrière l'utilisation de différents modes de fibre optique est d'augmenter la capacité des réseaux de transport. Les expériences initiales ont montré une grande complexité dans le traitement de signal (DSP) du récepteur. Dans cette thèse, nous étudions la viabilité et les défis de la transmission de données sur des fibres à quelques modes (FMF) pour des systèmes MDM à complexité de DSP réduite. Nos études comprennent à la fois une transmission de données cohérente et non cohérente. Dans notre première contribution, nous démontrons, pour la première fois, la transmission de données sur 4 canaux dans une nouvelle fibre OAM sans démultiplexage de polarisation optique. Nous utilisons une complexité de DSP réduite: deux jeux d'égaliseurs MIMO (multiple-input multiple-output) 2 × 2 au lieu d'un bloc égaliseur MIMO 4 × 4 complet. Nous proposons un nouveau démultiplexeur de mode permettant de recevoir simultanément deux polarisations d'un mode et de réaliser électriquement un démultiplexage de polarisation dans le récepteur DSP. Nous étudions également la pénalité OSNR due aux imperfections dans le démultiplexeur de mode et nous examinons la vitesse de transmission maximum accessible pour notre système. Dans notre deuxième contribution, nous étudions les dégradations modales dans les systèmes OAM-MDM, en nous concentrant sur leur effet sur la performance et la complexité du récepteur. Dans notre étude expérimentale, nous discutons pour la première fois de l'impact de deux modes non porteurs de données sur les canaux de données véhiculés par les modes OAM. Deux types différents de fibres OAM sont étudiés. Nous caractérisons notre liaison MDM en utilisant les techniques de mesure du temps de vol et de réponse impulsionnelle. Nous discutons des conclusions des résultats de caractérisation en étudiant l'impact des interactions modales sur la complexité de l'égaliseur du récepteur pour différents scénarios de transmission de données. Dans le troisième chapitre, nous étudions un nouveau FMF à maintien de polarisation et conduisons deux séries d'expériences de transmission de données cohérentes et de radio sur fibre (RoF). Nous démontrons pour la première fois, la transmission de données sans MIMO sur six et quatre canaux dans les systèmes cohérents et RoF, respectivement. Nous démontrons également, pour la première fois, la transmission de données RoF sur deux polarisations d'un mode dans une FMF. Nous discutons de la dégradation des performances due à la diaphonie dans de tels systèmes. Nous étudions également l'impact de la courbure sur cette fibre dans un contexte de RoF. La propriété de maintien de polarisation de cette fibre sous courbure est étudiée à la fois par des expériences de caractérisation et de transmission de données.Mode division multiplexing (MDM) has received extensive attention by researchers in the last few years. The main motivation behind using different modes of optical fiber is to increase the capacity of transport networks. Initial experiments showed high complexity in DSP of the receiver. In this thesis, we investigate the viability and challenges for data transmission over specially designed few mode fibers (FMF) for MDM systems with reduced DSP. Our studies include both coherent and non-coherent data transmission. In our first contribution, we demonstrate, for the first time, data transmission over 4 channels in a novel OAM fiber without optical polarization demultiplexing. We use reduced DSP complexity: two sets of 2×2 multiple-input multiple-output (MIMO) equalizers instead of a full 4×4 MIMO equalizer block. We propose a novel mode demultiplexer enabling us to receive two polarizations of a mode simultaneously and conducting polarization demultiplexing electrically in receiver DSP. We also investigate the OSNR penalty due to imperfections in the mode demultiplexer and we examine the maximum reachable baud rate for our system. In our second contribution, we study the modal impairments in OAM-MDM systems, focusing on their effect on receiver performance and complexity. In our experimental study, for the first time, we discuss the impact of two non-data carrying modes on data channels carried by OAM modes. Two different types of OAM fibers are studied. We characterize our MDM link using time-of-flight and impulse response measurement techniques. We discuss conclusions from characterization results with studies of the impact of modal interactions on receiver equalizer complexity for different data transmission scenarios . In the third contribution, we study a novel polarization-maintaining FMF and conduct two sets of coherent data transmission and non-coherent radio over fiber (RoF) experiments. We demonstrate for the first time, MIMO –Free data transmission over six and four channels in coherent and RoF systems, respectively. We also demonstrate, for the first time, RoF data transmission over two polarizations of a mode in a FMF. We discuss the performance degradation due to crosstalk in such systems. We also study the impact of bending on this fiber in RoF context. The polarization maintaining property of this fiber under bending is studied both via characterization and data transmission experiments

    Two-stage code acquisition in wireless optical CDMA communications using optical orthogonal codes

    Get PDF
    In this paper, we analyze the performance of code acquisition system in atmospheric optical code division multiple access (OCDMA) communications using optical orthogonal codes. Memory introduced by temporal correlation of optical fading process precludes us from using the Markov chain model for a code acquisition analysis. By considering this issue, we discuss how to extend the applicability of the Markov chain model to the atmospheric OCDMA communications. We analyze and compare the performance of correlator and chip level detector (CLD) structures in the acquisition system. In our analysis, we consider the effects of free space optical channel impairments, multiple access interference, and receiver thermal noise in the context of semi-classical photon-counting approach. Furthermore, we evaluate the performance of various two stage schemes that utilize different combinations of active correlator, matched filter, and CLD in search and verification stages, and we find the optimum acquisition scheme among them. Numerical results show significant improvement in reducing the acquisition time and required power for synchronization using our optimum scheme in the wireless OCDMA communications

    The impact of modal interactions on receiver complexity in OAM fibers

    Get PDF
    We experimentally study the modal interactions in mode division multiplexing (MDM) links supporting orbital angular momentum (OAM) modes of order zero and one. We use time of flight and channel impulse response measurements to characterize our OAM-MDM link and quantify modal impairments. We examine two OAM fibers with different index profiles and differential mode group delays (DMGD) between supported vector modes. Data transmission experiments probe the impact of modal impairments on digital signal processing complexity and achievable bit error rate for OAM-MDM link. We discuss in particular memory depth requirements for equalizers in separate mode detection schemes, and how memory depth varies with DMGD metrics as well as crosstalk level

    RoF data transmission using four linearly polarized vector Modes of a polarization maintaining elliptical ring core fiber

    Get PDF
    We experimentally investigate the feasibility of transmission of radio frequency (RF) signals over a 900 m polarization-maintaining, elliptical ring core fiber. No multiple-input multiple output (MIMO) processing is used to recover the RF signals carried by different modes; we recover the 16QAM, orthogonal frequency division multiplexing (OFDM) RF signals with the same techniques used for single mode fibers. For the first time, we report transmission of four RF streams over four channels in a few mode fiber. Also, for the first time, we transmit RF signals over two polarizations of a mode in few mode fibers and successfully recover data in both polarizations without polarization tracking or digital signal processing to separate polarizations. Furthermore, we examine the impact of fiber bending on crosstalk among channels. We show that even under severe bending, the polarization states remain separated and the RF streams transmitted on polarization states of a mode could be recovered with low power penalty

    Linearly polarized vector modes : enabling MIMO-free mode-division multiplexing

    Get PDF
    We experimentally investigate mode-division multiplexing in an elliptical ring core fiber (ERCF) that supports linearly polarized vector modes (LPV). Characterization show that the ERCF exhibits good polarization maintaining properties over eight LPV modes with effective index difference larger than 1 × 10−4. The ERCF further displays stable mode power and polarization extinction ratio when subjected to external perturbations. Crosstalk between the LPV modes, after propagating through 0.9 km ERCF, is below −14 dB. By using six LPV modes as independent data channels, we achieved the transmission of 32 Gbaud QPSK over 0.9 km ERCF without any multiple-input-multiple-output (MIMO) or polarization-division multiplexing (PDM) signal processing

    Mode division multiplexing using orbital angular momentum modes over 1.4 km ring core fiber

    Get PDF
    Mode division multiplexing (MDM) systems using orbital angular momentum (OAM) modes can recover the data in D different modes without recourse to full (2D × 2D) multiple input multiple output (MIMO) processing. One of the biggest challenges in OAM-MDM systems is the mode instability following fiber propagation. Previously, MIMO-free OAM-MDM data transmission with two modes over 1.1 km of vortex fiber was demonstrated, where optical polarization demultiplexing was employed in the setup. We demonstrate MDM data transmission using two OAM modes over 1.4 km of a specially designed ring core fiber without using full MIMO processing or optical polarization demultiplexing. We demonstrate reception with electrical polarization demultiplexing, i.e., minimal 2 × 2 MIMO, showing the compatibility of OAM-MDM with current polarization demultiplexing receivers

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000-18 : a geospatial modelling study

    Get PDF
    Background More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels.Methods We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km x 5 km resolution in 98 LMICs based on 2.1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution.Findings Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205000 (95% uncertainty interval 147000-257000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution.Interpretation Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore